skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Younes, Hassan_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many MRI contrast agents formed with the parahydrogen‐induced polarization (PHIP) technique exhibit biocompatible profiles. In the context of respiratory imaging with inhalable molecular contrast agents, the development of nonflammable contrast agents would nonetheless be highly beneficial for the biomedical translation of this sensitive, high‐throughput and affordable hyperpolarization technique. To this end, we assess the hydrogenation kinetics, the polarization levels and the lifetimes of PHIP hyperpolarized products (acids, ethers and esters) at various degrees of fluorine substitution. The results highlight important trends as a function of molecular structure that are instrumental for the design of new, safe contrast agents for in vivo imaging applications of the PHIP technique, with an emphasis on the highly volatile group of ethers used as inhalable anesthetics. 
    more » « less
  2. Abstract The growing interest in magnetic resonance imaging (MRI) for assessing regional lung function relies on the use of nuclear spin hyperpolarized gas as a contrast agent. The long gas‐phase lifetimes of hyperpolarized129Xe make this inhalable contrast agent acceptable for clinical research today despite limitations such as high cost, low throughput of production and challenges of129Xe imaging on clinical MRI scanners, which are normally equipped with proton detection only. We report on low‐cost and high‐throughput preparation of proton‐hyperpolarized diethyl ether, which can be potentially employed for pulmonary imaging with a nontoxic, simple, and sensitive overall strategy using proton detection commonly available on all clinical MRI scanners. Diethyl ether is hyperpolarized by pairwise parahydrogen addition to vinyl ethyl ether and characterized by1H NMR spectroscopy. Proton polarization levels exceeding 8 % are achieved at near complete chemical conversion within seconds, causing the activation of radio amplification by stimulated emission radiation (RASER) throughout detection. Although gas‐phaseT1relaxation of hyperpolarized diethyl ether (at partial pressure of 0.5 bar) is very efficient, withT1of ca. 1.2 second, we demonstrate that, at low magnetic fields, the use of long‐lived singlet states created via pairwise parahydrogen addition extends the relaxation decay by approximately threefold, paving the way to bioimaging applications and beyond. 
    more » « less